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A New Reciprocity Theorem
J. Cesar Monzon, Member, IEEE

Abstract— A new reciprocity theorem for isotropic media is

presented. This new theorem accounts for the effect of cross

polarization therefore gracefully complementing the accepted,
and century old, reciprocity theorem.

I. INTRODUCTION

o NE OF THE BASIC and most important theorems

of electromagnetic theory is the so-called reciprocity

theorem. Its importance is evident from its wide range of

applicability in all branches of electrical engineering. Its

history is rather long in view of its many contributors.

In 1877 Lord Rayleigh established a theorem of reciprocity

theorem for a linearized vibrating mechanical system [1].

Twenty-three years later he extended this to optics [2]. How-

ever, he did not consider phases, just the state of polarization

of each beam of light. It appears that Rayleigh’s work was first

extended to electromagnetic waves by Lorentz [3], which is

why the basic sourceless reciprocity theorem for isotropic me-

dia, as we know it today, is usually referred to as the Lorentz

form [4], [5]. It is important to mention the significantly less-

known fact [6], that in early 1877 Oliver Heaviside published

a paper related to an underwater electrical cable [7], wherein

he invoked what is today known as reciprocity theorem for

electrical networks. Heaviside was never credited as being a

pioneer in this area, possibly due to the lack of readability of

his works.

This early work was soon generalized to vector fields, and

later, to include complex anisotropy and time dependence.

Notable among the new research is the work of Welch [8]

who obtained a reciprocity relation for time-dependent elec-

tromagnetic fields in a homogeneous nondispersive medium

which involved retarded fields and both electric and magnetic

sources. Another important work is that of Kong and Cheng

[9], which handled the general time-harmonic problem of

full bianisotropic media and departed significantly from the

previous line of thought in that the relations obtained involved

a so-called complementary region, which was characterized

by a material composition different from that of the original

space.
The transition in the analysis from isotropic to bianisotropic

was not abrupt. There were numerous works on anisotropic

media involving different constitutive relations and/or different

boundary surface (such as surface impedance) and sometimes

inhomogeneities. More recently [10], the anisotropic work

has been extended to the case of inhomogeneous piezo-
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electric media (bounded by a surface

including the dielectric/magnetic and

impedance), thereby

elastic properties of

materials. Since the present work is purely isotropic, references

to nonisotropic cases will be kept rather brief, and from

now on we will concentrate exclusively on the isotropic

case.

We should also mention an interesting paperbyTai[11] who

by independent means derived a reciprocity relation which

bears some resemblance to the concept presented here. How-

ever, it involves two sets of fields which satisfy complementary

impedance conditions (one of the fields being introduced as

not being physically realizable) and is applied exclusively to a

layered configuration above a ground plane (for it appears that

the goal of the paper was to arrive at a symmetrical relationship

of two magnetic dyadic Green’s functions).

In reality, when we deal with fields in an isotropic dielec-

tric/magnetic medium, we are really invoking the quantum

mechanical problem of emission and absorption of photons

by atoms. Thus, reciprocity is intimately related to the well-

known principle of equal probabilities for inverse transi-

tions between two states of the same energy. Photons are

characterized by spin, which is intimately related to the

macroscopic circular polarization states we employ in elec-

trodynamics.

It follows that the proper frame of analysis for the macro-

scopic problem should involve the two circularly polarized

fields, each of which will be characterized by a reciprocity

relation. We are talking about general fields and sources and

not just plane waves. It is clear that space inversion and

time reversal symmetries will constrain these two reciprocity

relations, however, we cannot a priori conclude that the two

contain a single element of information.

That something is missing from the currently accepted

reciprocity theorem can be ascertained from the theorem which

says that: the field from source A evaluated at and in the

direction of source B is equal to the field from source B

evaluated at and in the direction of source A. Note that the

theorem involves only the fields polarized in the direction

of the sources. Nothing is said about the cross-polarized

fields. That information is not contained in the accepted

form.

A reciprocity theorem, in principle, is expected to account

for and specify all mutual exchanges between field distribu-

tions. For instance, if we have an electric dipole ~1, such as

shown in Fig. 1, we expect that a suitable theorem should give

an indication of the fields produced by ~1 on any other element

such as 72 (see Fig. 1). The standard reciprocity theorem

[presented here in (23)] cannot account for this exchange and

dismisses it in the context of “absence of reaction” between
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singularities, Similar point relationships have been found to

, hold even in the more complex biisotropic case [12].
I Insertion of (5)–(7) into Maxwell equations,
,

Vx~=jwcE+~,
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vxi?=-jw/L~-~ (8)

i2 %2 and after grouping the resulting terms into RCP and LCP
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‘J’

~v ‘

1 and provided the circularly polarized components satisfy

Fig. 1. Related to the coupling between elementat dipoles. v x n+ = An+ +“7+. (lo)

the elements. We know however that there is more to it since The inversion of (10) can be done via standard methods,

J1 produces an H field along J2 and vice versa.1 the solution being

In what follows, we demonstrate that there is another basic
~h = –Lk .~+ (11)

relation; a missing reciprocity theorem which accounts for

the cross-polarized field components and therefore gracefully

complements the currently accepted theorem. The practical and L+= VXT+VT* -V+ (12)
analytical relevance of this fundamental theory is evident.

II. ANALYSIS where ~+ satisfies the simple equation

The initial step in our derivation is a field decomposition

into RCP (right circularly polarized or “+” wave) and LCP

(left circularly polarized or “-” wave) components. It is

well known that in a homogeneous isotropic space, Maxwell

equations admit plane wave solutions of the form
.——

~ = ~e–vr.
.——

1
~ = ~e–pr (2)

where v is the wavenumber, and where F and ~ are orthogonal

to the direction of propagation O and given by

(4)

for [t${] forming a right-handed triad. Here we assume a time

convention exp{jwt} which is suppressed throughout.

Equation (3) indicates that E+ is proportional to ~+, the con-

stant of proportionality being independent of the direction of

propagation;. Since the total field solution in the presence of

sources can be expressed as a summation of (2) over a bundle

of inhomogeneous waves; the following decomposition, which

includes electric and magnetic sources, becomes apparent

Z= E++ E-; T=z++R- (5)

7=7++ 7.; 7W=7W++Z.. (6)

And the above argument coupled with (3) results in

(v’ + ?J’)T* = 7,,. (13)

Equation (9) gives the conditions for excitation. Single-mode

excitation for instance can be achieved via parallel/antiparallel

loop (~) and dipole (~) of fixed ratio jq.
–(1) ~(1), ~d

Let us now define two sets of sources, (.J ,

(7(2), ~(2)>(lw$ich according to (9) :result in the two sets

of sources ~+’ , with corresponding sets of fields Hf ‘2).

Equation (10) can be independently applied to each set of

sources yielding

v x 77&2)= M&’) +7$’). (14)

—(2,1)
If we dot this equation with H+ and subtract the resulting

two component equations followed by use of the identity

~.Vx~–~.Vx~=V.(~x~”), we obtain

V.{TLJX77$)} =U+ (15)

where

(16)

Integration of (15) over all space, followed by application of

Gauss’s theorem, yields the identity

44+
/.

druk = O (17)

z+ (F) = +jqn+ (F). (7) where the integral sign denotes volumetric integration over

The point relationship (7) is a remarkable property of the fields, infinite space, and where ~ is given Vy

which is satisfied everywhere, even in the neighborhood of
tit = ~ dsti”{~~) X~:)} (18a)

1The reader is cautioned not to envision the elementary sources as wires Js=

for in that case thk point may appear trivial. On the other extreme we have
the case of a “source” being a magnetoelectric rod where the incident axial for ii the outward-pointing unit vector normal to the surface

magnetic field induces an axiaf electric (displacement) current. Sm. Via (5) and (7), the above integral can be rewritten in
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terms of the total fields as

@*=+~mdsfi.{[R(’) xE(’)_;~(’)xz(’)]

+ @ -#)

1
+@x~(2)] . (18b)

n

The integral of the second square bracket is zero in view of the

Lorentz reciprocity theorem [4], [5]. That the whole integral

(18b) is zero can be easily shown from the fact that at an

infinite distance away from all sources the~ and~ fields are

related by ~ = ii x ~/q. Thus we have that in general, with

no constraint in infinite homogeneous space

Ldrub = O. (19)

Note that we could have gone from (15) to (19) directly

via Gauss’s theorem and the assumption of very small ma-

terial losses; that is however just a convenience, somewhat

restrictive and unnecessary.

The above expression (19) is actually a strong statement,

for it implies that reciprocity is obeyed by each characteristic

mode, independently. Note that (19) consists of two equations.

In what follows we prove that those equations are independent.

To express (19) in terms of total fields, we express the partial

fields in terms of the total fields via (5) and (7)

(20)

Use of this and (9) in the definition of u+ given by (16),

results in

1
uk=~

+7-)[77(2).I?(l)–77(1).m(2j
+j7t[7F2)~7(1)–77(1).7(2)]

‘(2) . J/@) – E+j [E

1

–(1) .3p “ (21)

~q[~(z) . -jv _ -#) . 7( ’)1

For reasons that will become clear very shortly, instead of

directly enforcing (19), we will enforce the two equivalent

expressions

Ldr(u+ +L) = O. (22)

This results in the following two identities:

1) The difference [lower sign in (22)]

/.
~r(j(o -#) _ ~(l) 77(2),

——Ld@(2) . E(l) – ~(z) . #)) (23)

which is the standard reciprocity theorem and forms the

basis for the definition of reactions, which in turn has

resulted in a general procedure for the establishment

of stationary formulas [13]. Impressive developments in

microwave theory as we know it, have been the product

of wise exploitation of (23). Standard reciprocity (23) is

usually abbreviated as (1, 2) = (2, 1).

2) The addition [upper sign in (22)]

Ld@i#) .E(’)+r)2#1).77(2))

—
-/.

d~(~(’) . #) + ~’~(z) . #)) (24)

which constitutes a new reciprocity theorem. It is not

related to the standard theorem (23), even though it

bears some resemblance when one considers one set of

sources to exist in dual space (c + ~, E ~ H, ~ -+

–E, PEC ~ PMC, etc.). This is not the case though,

since all sources in (24) cohabit the same space.

Another demonstration that (23) and (24) are independent

arises when one tries to extend (24) to regions V of finite

extent bounded by perfect conductors (electric or magnetic).

When this happens, ~% is no longer zero, and (23) and

(24) should be augmented by the difference and the sum

respectively of the two elements (integrals) presented in ( 18b).

For S the finite surface enclosing V, (23) should be augmented

by

The above integral being zero because on a perfect conductor

either ~ x fi is zero (electric, PEC), or n x ~ is zero (magnetic,

PMC). On the other hand, (24) should be augmented by

which is clearly nonzero for perfect conductors in general.

This example clearly shows that (23) and (24) are completely

independent because the former applies to finite regions and

the latter needs an extra term.

Note that (24) is directly applicable to the geomet~ of

Fig. 1, where it results in a trivial statement of symmetry. If we

complicate the situation slightly, such as shown in Fig. 2, via

an axial electric line source and a line source of transversely-

directed current elements, we end up with the less trivial result

that the axial field HZ due to the transversal currents is equal

to the projection of the magnetic field from the axial source,

in the direction of the transversal currents. Notice that the

standard theorem (23) is still not applicable.

It should also be mentioned, for the sake of completeness,

that (24) bears no relation to the modified reciprocity theorem

[9], which applies to bianisotropic media in general, but which
does not depart from (23) for the isotropic case we treat here.

Since reciprocity in the sense of (24) is different to reci-

procity in the sense of (23), for convenience we adopt

With this abbreviation, the new reciprocity

compactly written as

[a, b]= [b, a].

theorem can be

(28)
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Fig. 2. Related to the coupling between line sources.

III. FURTHER DISCUSSION AND ELEMENTARY APPLICATIONS

It may appear at first that the usefulness of (27) and (28) is

hampered by the need to deal with an infinite homogeneous

space. This is not so, and has been truly demonstrated by all

the clever developments used to exploit the standard theorem

(23). A simple way through which (27) and (28) can be

applied to general regions is by replacing the inhomogeneities

and scatterers by equivalent surface currents (electric and

magnetic) or via displacement (volumetric) currents (electric

and magnetic), all of which are made to radiate in free space.

In order to appreciate the power of the new reciprocity

theorem, we consider the case of scattering by an arbitrarily

shaped perfect electric conductor of surface S. We will use

an electric dipole source ~“ = Io~ 8(37 – 3%), which produces

fields ~’nc(?, zo) and ~’nc(~, EO) at point T.

Under the circumstances we replace the conductor by the

electric surface currents ~s (?F), which radiate in free space.

There will be no magnetic currents, and the volumetric inte-

grals in (23) and (24) become surface integrals over S. The

new reciprocity theorem results in the scattered magnetic field

whereas the standard form yields the scattered electric field

!77s(7.) . f= ; /M’7.(?i) .73”’(Z, 3?.). (30)
0

Equation (30) expresses the copolarized component of the

scattered field, is well known, and has been used as the basis

for stationary formulas for monostatic scattering. Equation (29)

on the other hand appears to be new and relates essentially to

the crosspolarized scattered component. A sound conclusion

can be made: That the new reciprocity theorem complements

the old one in that the new one is eminently cross-polarized

while the old one is eminently copolarized.

In passing, we note that (29) can be used as the starting

point for a development on variational expressions for cross-

polarization involving metallic bodies. It can also be used

/

A

x

Fig. 3. The dihedralcornerreflectorasa depolarizingstructure.

(via plane wave incidence) as a new formula for the cross-

polarized scattering cross section. Most importantly, note that

by redefining ~,(z) as due to an independent source and

suitably choosing the observation point we may obtain new

integral equations for scattering. These and other avenues will

be explored in a forthcoming paper.

It appears that the new theorem is ideal for complex

structures or simple structures with poor symmetry such that

they exhibit a large degree of crosspolarization. For instance,

au arbitrarily shaped thin wire scatterer (e.g., a spiral) cannot

be analyzed via the old theorem alone; use must be made of

(27), (28) for the important crosspolarized components.

A very interesting example of the need of the new theorem

is afforded by the important problem of normal incidence on

an ideal dihedral corner (see Fig. 3), for which it is known

that the scattered field is depolarized except for polarization

either along the axes or perpendicular to it. When the incident

polarization makes 45° with the axes, the scattered field is

entirely crosspolarized (thereby rendering the classical reci-

procity theorem useless). A simplified application of (29), (30)

to the corner reflector is included in the Appendix.

To end this presentation we resort to a dramatic feature

of (29)., If we employ physical optics (PO), namely ~, =

2fi x E’”c, we immediately see from (29) that

77;o(?&) . t = (). (31)

It follows that (29) displays the fact that the PO approximation

does not depolarize under monostatic conditions (regardless of

separation between source and scatterer). This is a well-known

result which yields more confidence cm (27), (28).

IV. CONCLUSION

A new reciprocity relation has been obtained via the use

of a general field expansion in terms of circularly polarized

components. This new theorem, unlike the currently accepted
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reciprocity theorem, accounts for crosspolarization, and there-

fore gracefully complements the accepted form. The new

theorem is compactly written as [a, b] = [b, a] as opposed to

the traditional theorem which is abbreviated as (a, b) = (b, a).

The validity and significance of the new theorem is discussed

and elementary applications included.

APPENDIX

Here we apply (29) and (30) to an electrically large dihedral

corner reflector which is illustrated in Fig. 3. The source is a

distant electric dipole of strength 11 located in the plane z = O

and at a distance 1-0, which produces a field of the form

—inc
E= c~e3(az+PY). Einc = L&c x 2’ (Al)

~

where

a=kcoso, ~=kSinO (A2)

and

C = j@2g.
0

(A3)

The direction ~ forms an angle v with the 2 axis. The incident

field is locally a plane wave which propagates at an angle b’

with respect to the ~ axis.

Equations (29) and (30) require an exact expression for the

current induced on the reflector. No exact analytical solution

exists, however, we will ignore diffraction by the edges and

approximate the current via geometrical optics (physical optics

is not appropriate here due to the multiple reflections). In

the neighborhood of the reflector surface the fields can be

approximated by the effect of the source dipole plus its three

images (obtained by standard means, as if the reflector was

infinite in extent). As usual the current is given by ~ = h x ~.

After some algebra we obtain:

1) In the Z-Z plane (O < z < a, –b/2 < z < b/2)

k-$ c . {Cos (cuz) . Sinvi
v

– j Sin@ ~Cosv . Sin (az).2}. (A4)

2) In the y-z plane (O < y < a, –b/2 < z < b/2)

7# C . {Cos (@y) . Sin vy
‘v

+ j Cosb’ ~ Cosv . Sin (~y)~}. (A5)

Next we evaluate (29)–(30), retaining dominant terms and

neglecting terms of order ( l/ka). We obtain ~’ . f and ~’ . ~

which can be used to define the cross-polarized cross section

o cross and copolarized cross section OCO,respectively

zs. l 2
– 41rr: ~ ;

E’.l 2
0 cross — ~co = 47rr: —

—inc ‘
(A6)

H E

After some lengthy algebra we obtain

8~a2b2
~ cross = ~ Sin2 (I9 + 7r/4) ~Sin2 (2v) (A7)

8~a2b2
o .0 = ~ Sinz (0 + 7r/4) . COS2(2V). (A8)

When w = O or 7r/2 (i.e., polarization along the axes or

perpendicular to it), there is no depolarization, OC,O,~ = O

and aCOassumes the usual expression for a reflector [14]–[15].

Aside from this condition, the standard reciprocity theorem (as

measured by OCO)does not reflect the true coupling between

sources (dipole and currents on the reflector). When v = 7r/4

for instance mCOdoes not predict coupling, whereas OC,O,, is

a maximum indicating complete crosspolarization. The new

reciprocity theorem clearly complements the old one,
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