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A New Reciprocity Theorem

J. Cesar Monzon, Member, IEEE

Abstract— A new reciprocity theorem for isotropic media is
presented. This new theorem accounts for the effect of cross
polarization therefore gracefully complementing the accepted,
and century old, reciprocity theorem.

I. INTRODUCTION

NE OF THE BASIC and most important theorems
Oof electromagnetic theory is the so-called reciprocity
theorem. Its importance is evident from its wide range of
applicability in all branches of electrical engineering. Its
history is rather long in view of its many contributors.

In 1877 Lord Rayleigh established a theorem of reciprocity
theorem for a linearized vibrating mechanical system [1].
Twenty-three years later he extended this to optics [2]. How-
ever, he did not consider phases, just the state of polarization
of each beam of light. It appears that Rayleigh’s work was first
extended to electromagnetic waves by Lorentz [3], which is
why the basic sourceless reciprocity theorem for isotropic me-
dia, as we know it today, is usually referred to as the Lorentz
form [4], [5]. It is important to mention the significantly less-
known fact [6], that in early 1877 Oliver Heaviside published
a paper related to an underwater electrical cable [7], wherein
he invoked what is today known as reciprocity theorem for
electrical networks. Heaviside was never credited as being a
pioneer in this area, possibly due to the lack of readability of
his works.

This early work was soon generalized to vector fields, and
later, to include complex anisotropy and time dependence.
Notable among the new research is the work of Welch [8]
who obtained a reciprocity relation for time-dependent elec-
tromagnetic fields in a homogeneous nondispersive medium
which involved retarded fields and both electric and magnetic
sources. Another important work is that of Kong and Cheng
[9], which handled the general time-harmonic problem of
full bianisotropic media and departed significantly from the
previous line of thought in that the relations obtained involved
a so-called complementary region, which was characterized
by a material composition different from that of the original
space.

The transition in the analysis from isotropic to bianisotropic
was not abrupt. There were numerous works on anisotropic
media involving different constitutive relations and/or different
boundary surface (such as surface impedance) and sometimes
inhomogeneities. More recently [10], the anisotropic work
has been extended to the case of inhomogeneous piezo-
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electric media (bounded by a surface impedance), thereby
including the dielectric/magnetic and elastic properties of
materials. Since the present work is purely isotropic, references
to nonisotropic cases will be kept rather brief, and from
now on we will concentrate exclusively on the isotropic
case.

We should also mention an interesting paper by Tai [11] who
by independent means derived a reciprocity relation which
bears some resemblance to the concept presented here. How-
ever, it involves two sets of fields which satisfy complementary
impedance conditions (one of the fields being introduced as
not being physically realizable) and is applied exclusively to a
layered configuration above a ground plane (for it appears that
the goal of the paper was to arrive at a symmetrical relationship
of two magnetic dyadic Green’s functions).

In reality, when we deal with fields in an isotropic dielec-
tric/magnetic medium, we are really invoking the quantum
mechanical problem of emission and absorption of photons
by atoms. Thus, reciprocity is intimately related to the well-
known principle of equal probabilities for inverse transi-
tions between two states of the same energy. Photons are
characterized by spin, which is intimately related to the
macroscopic circular polarization states we employ in elec-
trodynamics.

It follows that the proper frame of analysis for the macro-
scopic problem should involve the two circularly polarized
fields, each of which will be characterized by a reciprocity
relation. We are talking about general fields and sources and
not just plane waves. It is clear that space inversion and
time reversal symmetries will constrain these two reciprocity
relations, however, we cannot a priori conclude that the two
contain a single element of information.

That something is missing from the currently accepted
reciprocity theorem can be ascertained from the theorem which
says that: the field from source A evaluated at and in the
direction of source B is equal to the field from source B
evaluated at and in the direction of source A. Note that the
theorem involves only the fields polarized in the direction
of the sources. Nothing is said about the cross-polarized
fields. That information is not contained in the accepted
form.

A reciprocity theorem, in principle, is expected to account
for and specify all mutual exchanges between field distribu-
tions. For instance, if we have an electric dipole J1, such as
shown in Fig. 1, we expect that a suitable theorem should give
an indication of the fields produced by J; on any other element
such as Jy (see Fig. 1). The standard reciprocity theorem
[presented here in (23)] cannot account for this exchange and
dismisses it in the context of “absence of reaction” between
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Fig. 1. Related to the coupling between elemental dipoles.
the elements. We know however that there is more to it since
J1 produces an H field along Jo and vice versa.!

In what follows, we demonstrate that there is another basic
relation; a missing reciprocity theorem which accounts for
the cross-polarized field components and therefore gracefully
complements the currently accepted theorem. The practical and
analytical relevance of this fundamental theory is evident.

II. ANALYSIS

The initial step in our derivation is a field decomposition
into RCP (right circularly polarized or “+” wave) and LCP
(left circularly polarized or “—” wave) components. It is
well known that in a homogeneous isotropic space, Maxwell
equations admit plane wave solutions of the form
H=he "7 )

il JoT

E =g,

where v is the wavenumber, and where € and k are orthogonal
to the direction of propagation ¥ and given by

ey = £jnihy 3)
_ 1 N
P = 2537 50) @

for [08t] forming a right-handed triad. Here we assume a time
convention exp{jwt} which is suppressed throughout.
Equation (3) indicates that € is proportional to h., the con-
stant of proportionality being independent of the direction of
propagation . Since the total field solution in the presence of
sources can be expressed as a summation of (2) over a bundle
of inhomogeneous waves; the following decomposition, which
includes electric and magnetic sources, becomes apparent

E=FE,+E_; H=H, +H_ &)

TJ=J +J_; M=My+M_. (6)

And the above argument coupled with (3) results in
EL(T) = FjnH (7). M
The point relationship (7) is a remarkable property of the fields,
which is satisfied everywhere, even in the neighborhood of
1The reader is cautioned not to envision the elementary sources as wires
for in that case this point may appear trivial. On the other extreme we have

the case of a “source” being a magnetoelectric rod where the incident axial
magnetic field induces an axial electric (displacement) current.
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singularities. Similar point relationships have been found to
hold even in the more complex biisotropic case [12].
Insertion of (5)-(7) into Maxwell equations

VxH=jweE+J, VxE=—jwupuH-M (8
and after grouping the resulting terms into RCP and LCP

components, we find that the separation is legitimate provided
the sources are decomposed according to

— M
Te=+—%,
Jn

and provided the circularly polarized components satisfy

V x T‘I_i = :i:vﬁi -I—‘j:t.

M= —;—W + jnJ] ©

(10)

The inversion of (10) can be done via standard methods,
the solution being

Hy=-Li Ty 1)
Li:VxTivTﬂ:—v—;- (12)

where U satisfies the simple equation
(V2 + 0Ty = s (13)

Equation (9) gives the conditions for excitation. Single-mode
excitation for instance can be achieved via parallel/antiparallel
loop (M) and dipole (J) of fixed ratio ju.

Let us now define two sets of sources, (J 74 ) ) and
(J 7% , M e ), which according to (9) result in the two sets
of sources 7$ 2 , with corresponding sets of fields H(il 2,
Equation (10) can be independently applied to each set of
sources yielding

7Y

—(1,2) | (1, 2)

v x Y = 20738 + 74 (14)
If we dot this equation with H " and subtract the resulting
two component equations followed by use of the identity

B-VxA-A.VxB=V-(AxB), we obtain

VAR x T = uy (15)
where
we =7 TP 7P TP, (16)

Integration of (15) over all space, followed by application of
Gauss’s theorem, yields the identity

Pt +/ drugy =0 {amn

where the integral sign denotes volumetric integration over
infinite space, and where 1) is given by

by = jq{ s (AP x 7Dy (182)

for 7 the outward-pointing unit vector normal to the surface
Seo. Via (5) and (7), the above integral can be rewritten in
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terms of the total fields as
_ — 1 — —
i = lj[ dSn - { [H“’ x B - ZEY x E(Q)}
4/s., n

+ %[F“) x E? 1+ BY « ﬁ<2)]}. (18b)
The integral of the second square bracket is zero in view of the
Lorentz reciprocity theorem [4], [5]. That the whole integral
(18b) is zero can be easily shown from the fact that at an
infinite distance away from all sources the F and H fields are
related by H = # x E/n. Thus we have that in general, with
no constraint in infinite homogeneous space

/ druy = 0.

Note that we could have gone from (15) to (19) directly
via Gauss’s theorem and the assumption of very small ma-
terial losses; that is however just a convenience, somewhat
restrictive and unnecessary.

The above expression (19) is actually a strong statement,
for it implies that reciprocity is obeyed by each characteristic
mode, independently. Note that (19) consists of two equations.
In what follows we prove that those equations are independent.

To express (19) in terms of total fields, we express the partial
fields in terms of the total fields via (5) and (7)

(19)

— 1/ FE
= - i— . 2
Hy= [H +j n] (20)
Use of this and (9) in the definition of uy given by (16),
results in
:I:n[ﬁ(z) . M(l) _ F(l) . M@)]
:Fﬂ[E(Z) _7(1) _ E(l) _7(2)]

21)

For reasons that will become clear very shortly, instead of
directly enforcing (19), we will enforce the two equivalent
expressions

/ dr(us £u_) =0. (22)

This results in the following two identities:
1) The difference [lower sign in (22)]

/ d‘r(j(l) O yiC) -F(z))

= f dar(T® BV —m® . 7Yy 23)

which is the standard reciprocity theorem and forms the
basis for the definition of reactions, which in turn has
resulted in a general procedure for the establishment
of stationary formulas [13]. Impressive developments in
microwave theory as we know it, have been the product
of wise exploitation of (23). Standard reciprocity (23) is
usually abbreviated as (1, 2) = (2, 1).

2) The addition [upper sign in (22)]
/ i B 427 .7

= / ar(M? . BV + 279 3Y) )

which constitutes a new reciprocity theorem. It is not
related to the standard theorem (23), even though it
bears some resemblance when one considers one set of
sources to exist in dual space (¢ < u, E — H, H —
—E, PEC — PMC, etc.). This is not the case though,
since all sources in (24) cohabit the same space.
Another demonstration that (23) and (24) are independent
arises when one tries to extend (24) to regions V' of finite
extent bounded by perfect conductors (electric or magnetic).
When this happens, ¥+ is no longer zero, and (23) and
(24) should be augmented by the difference and the sum
respectively of the two elements (integrals) presented in (18b).
For S the finite surface enclosing V, (23) should be augmented
by

5]— ]{ asn-HY xED BV x 7P (25)
NJs

The above integral being zero because on | a perfect conductor
either £'x 1 is zero (electric, PEC), or 7 x H is zero (magnetic,
PMC). On the other hand, (24) should be augmented by

L f S - [ﬁ“) «T? - LFV 2 E?| e
2 /s n

which is clearly nonzero for perfect conductors in general.
This example clearly shows that (23) and (24) are completely
independent because the former applies to finite regions and
the latter needs an extra term.

Note that (24) is directly applicable to the geometry of
Fig. 1, where it results in a trivial statement of symmetry. If we
complicate the situation slightly, such as shown in Fig. 2, via
an axial electric line source and a line source of transversely-
directed current elements, we end up with the less trivial result
that the axial field H, due to the transversal currents is equal
to the projection of the magnetic field from the axial source,
in the direction of the transversal currents. Notice that the
standard theorem (23) is still not applicable.

It should also be mentioned, for the sake of completeness,
that (24) bears no relation to the modified reciprocity theorem
[9], which applies to bianisotropic media in general, but which
does not depart from (23) for the isotropic case we treat here.

Since reciprocity in the sense of (24) is different to reci-
procity in the sense of (23), for convenience we adopt

[a, b] = / de{? T H® £ 3 By @
With this abbreviation, the new reciprocity theorem can be
compactly written as

[a, b] = [b, al. (28)
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Fig. 2. Related to the coupling between line sources.

II1. FURTHER DISCUSSION AND ELEMENTARY APPLICATIONS

It may appear at first that the usefulness of (27) and (28) is
hampered by the need to deal with an infinite homogeneous
space. This is not so, and has been truly demonstrated by all
the clever developments used to exploit the standard theorem
(23). A simple way through which (27) and (28) can be
applied to general regions is by replacing the inhomogeneities
and scatterers by equivalent surface currents (electric and
magnetic) or via displacement (volumetric) currents (electric
and magnetic), all of which are made to radiate in free space.

In order to appreciate the power of the new reciprocity
theorem, we consider the case of scattering by an arbitrarily
shaped perfect electric conductor of surface S. We will use
an electrjc dipole source ja = Iof 8(ZF — T, ), which produces
fields H" (%, T,) and E (T, T,) at point .

Under the circumstances we replace the conductor by the
electric surface currents J, (T), which radiate in free space.
There will be no magnetic currents, and the volumetric inte-
grals in (23) and (24) become surface integrals over S. The
new reciprocity theorem results in the scattered magnetic field

H (=) I = Iif{ dST,(z) - H (%, T,)
s

o

29
whereas the standard form yields the scattered electric field

ﬁmwhl%wlmiW@my (30)
I, Js
Equation (30) expresses the copolarized component of the
scattered field, is well known, and has been used as the basis
for stationary formulas for monostatic scattering. Equation (29)
on the other hand appears to be new and relates essentially to
the crosspolarized scattered component. A sound conclusion
can be made: That the new reciprocity theorem complements
the old one in that the new one is eminently cross-polarized
while the old one is eminently copolarized.

In passing, we note that (29) can be used as the starting
point for a development on variational expressions for cross-
polarization involving metallic bodies. It can also be used
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Fig. 3. The dihedral corner reflector as a depolarizing structure.

(via plane wave incidence) as a new formula for the cross-
polarized scattering cross section. Most importantly, note that
by redefining J,(Z) as due to an independent source and
suitably choosing the observation point we may obtain new
integral equations for scattering. These and other avenues will
be explored in a forthcoming paper.

It appears that the new theorem is ideal for - complex
structures or simple structures with poor symmetry such that
they exhibit a large degree of crosspolarization. For instance,
an arbitrarily shaped thin wire scatterer (e.g., a spiral) cannot
be analyzed via the old theorem alone; use must be made of
(27), (28) for the important crosspolarized components.

A very interesting example of the need of the new theorem
is afforded by the important problem of normal incidence on
an ideal dihedral corner (see Fig. 3), for which it is known
that the scattered field is depolarized except for polarization
either along the axes or perpendicular to it. When the incident
polarization makes 45° with the axes, the scattered field is
entirely crosspolarized (thereby rendering the classical reci-
procity theorem useless). A simplified application of (29), (30)
to the corner reflector is included in the Appendix.

To end this presentation we resort to a dramatic feature
of (29). If we employ physical optics (PO), namely J, =
2n X H, we immediately see from (29) that
d=0. (31)
1t follows that (29) displays the fact that the PO approximation
does not depolarize under monostatic conditions (regardless of
separation between source and scatterer). This is a well-known
result which yields more confidence on (27), (28).

IV. CONCLUSION

A new reciprocity relation has been obtained via the use
of a general field expansion in terms of circularly polarized
components. This new theorem, unlike the currently accepted



14 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 1, JANUARY 1996

reciprocity theorem, accounts for crosspolarization, and there-
fore gracefully complements the accepted form. The new
theorem is compactly written as [a, b] = [b, a] as opposed to
the traditional theorem which is abbreviated as {(a, b) = (b, a).
The validity and significance of the new theorem is discussed
and elementary applications included.

APPENDIX

Here we apply (29) and (30) to an electrically large dihedral
corner reflector which is illustrated in Fig. 3. The source is a
distant electric dipole of strength Il located in the plane z = 0
and at a distance r,, which produces a field of the form

1—

E™ = Cleptenttn, T = EE‘““ x & (Al)
where
a=kCosb, B =kSinf (A2)
and
e~ IkTo
C = jnllk* pr— (A3)

The direction { forms an angle v with the £ axis. The incident
field is locally a plane wave which propagates at an angle 6
with respect to the Z axis.

Equations (29) and (30) require an exact expression for the
current induced on the reflector. No exact analytical solution
exists, however, we will ignore diffraction by the edges and
approximate the current via geometrical optics (physical optics
is not appropriate here due to the multiple reflections). In
the neighborhood of the reflector surface the fields can be
approximated by the effect of the source dipole plus its three
images (obtained by standard means, as if the reflector was
infinite in extent). As usual the current is given by J = 7 x H.
After some algebra we obtain:

1) In the z-z plane (0 < z < a, —b/2 < 2 < b/2)

I~ —%C’- {Cos (az) - Sinvi

—7Sind - Cosv-Sin(az)z}. (A4)
2) In the y-z plane (0 <y < a, —b/2 < z < b/2)
RS %C -{Cos (By) - Sinv§

4+ jCosd - Cosv - Sin (By)2}. (AS5)

Next we evaluate (29)-(30), retaining dominant terms and
neglecting terms of order (1/ka). We obtain H -l and E° -1
which can be used to define the cross-polarized cross section
Ocross and copolarized cross section o, respectively

~12 2
. — .
S| H -

0| —=inc | ?

Ocross = 47T Oco = 47r7"3 (A6)

—ine

After some lengthy algebra we obtain

8mab? . .
Ocross = —%\2— Sin? (8 4 w/4) - Sin? (2v) (AT)
8ra?b?
Teo = 35— Sin® (8 4+ m/4) - Cos®(2v).  (A8)

When v = 0 or n/2 (i.e., polarization along the axes or
perpendicular to it), there is no depolarization, geross = 0
and o, assumes the usual expression for a reflector [14]-[15].
Aside from this condition, the standard reciprocity theorem (as
measured by o.,) does not reflect the true coupling between
sources (dipole and currents on the reflector). When v = 7 /4
for instance o, does not predict coupling, whereas g osq 1S
a maximum indicating complete crosspolarization. The new
reciprocity theorem clearly complements the old one.
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